問題
出回線数が16回線の回線群について、使用中の回線数を2分ごとに調査したところ、表に示す結果が得られた。この回線群の調査時間中における出線能率は、( )パーセントとみなすことができる。
- 2
- 4
- 8
- 25
- 55
解答
4
解説
トラヒック理論の平均使用率に関する問題です。
ATMを例に、下図のような待ち行列を考えてみます。
この装置(ここではATM)が時間的に使用されている割合を、平均使用率(出線能率)ηといいます。
例えば、9:02の平均使用率は、以下のように求められます。
$$\begin{eqnarray} \eta_1=\frac{3}{16} \end{eqnarray}$$このような形で、各時間における平均使用率を求めて平均をとれば、平均使用率(出線能率)を求められます。
平均をとる際は、10個データがあるので、10で割ればOKです。
$$\begin{eqnarray} \eta&=&\frac{3+3+4+3+2+5+10+4+4+2}{16\times10} \\ &=&\frac{40}{16\times10} \\ &=&\frac{1}{4} \\ &=&0.25 \end{eqnarray}$$参考
呼量や呼損率が与えられた場合、装置数nに対する平均利用率(出線能率)ηは、下記式で求められます。
$$\begin{eqnarray} \eta=\frac{a(1-B)}{n} \end{eqnarray}$$ここで、ηは平均使用率(出線能率)、aは呼量[erl]、Bは呼損率、nは出線数です。
この式は、分母が実際に運ばれた呼量を表し、分子が出線数を表しています。